On a quasilinear Schrödinger-Poisson system
نویسندگان
چکیده
In this paper we study a quasilinear elliptic system coupled by Schrödinger equation with p-Laplacian operator and Poisson equation. Some scaling transformation ingenious methods are applied to produce the bounded Palais-Smale sequences existence of nontrivial solutions for is obtained mountain pass theorem.
منابع مشابه
On a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملThe Schrödinger-Poisson System on the Sphere
Abstract. We study the Schrödinger–Poisson system on the unit sphere S2 of R3, modeling the quantum transport of charged particles confined on a sphere by an external potential. Our first results concern the Cauchy problem for this system. We prove that this problem is regularly well-posed on every Hs(S2) with s > 0, and not uniformly well-posed on L2(S2). The proof of well-posedness relies on ...
متن کاملParallel solution of a Schrödinger-Poisson system
We present a parallel solution of the Schrr odinger{Poisson system on distributed memory machines. The Schrr odinger{Poisson system is an evolution model for the numerical simulation of a collisionless electron plasma. We apply the Galerkin{Fourier method to the one{ dimensional system which results in a nonlinear system of ordinary differential equations. This initial value problem is solved b...
متن کاملAbout a 1 D Stationary Schrödinger Poisson System
The stationary SchrrdingerrPoisson system with a selffconsistent eeective KohnnSham potential is a system of PDEs for the electrostatic potential and the envelopes of wave functions deening the quantum mechanical carrier densities in a semiconductor nanostructure. We regard both Poisson's and Schrrdinger's equation with mixed boundary conditions and discontinu-ous coeecients. Without an exchang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2022
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2021.125446